肺超声(LUS)可能是唯一可用于连续和周期性监测肺的医学成像方式。这对于在肺部感染开始期间跟踪肺表现或跟踪疫苗接种对肺部的影响非常有用,如Covid-19中的肺部作用。有许多尝试将肺严重程度分为各个类别或自动分割各种LUS地标和表现形式的尝试。但是,所有这些方法均基于训练静态机器学习模型,该模型需要大量临床注释的大数据集,并且在计算上是沉重的,并且大部分时间非现实时间。在这项工作中,提出了一种实时重量的基于活跃的学习方法,以在资源约束设置中在COVID-19的受试者中更快地进行分类。该工具基于您看起来仅一次(YOLO)网络,具有基于各种LUS地标,人工制品和表现形式的标识,肺部感染严重程度的预测,基于主动学习的可能性,提供图像质量的能力。临床医生的反馈或图像质量以及对感染严重程度高的重要框架的汇总,以进一步分析。结果表明,对于LUS地标的预测,该提议的工具在联合(IOU)阈值的交叉点上的平均平均精度(MAP)为66%。在Quadro P4000 GPU运行时,14MB轻量级Yolov5S网络可实现123 fps。该工具可根据作者的要求进行使用和分析。
translated by 谷歌翻译
Attention mechanisms form a core component of several successful deep learning architectures, and are based on one key idea: ''The output depends only on a small (but unknown) segment of the input.'' In several practical applications like image captioning and language translation, this is mostly true. In trained models with an attention mechanism, the outputs of an intermediate module that encodes the segment of input responsible for the output is often used as a way to peek into the `reasoning` of the network. We make such a notion more precise for a variant of the classification problem that we term selective dependence classification (SDC) when used with attention model architectures. Under such a setting, we demonstrate various error modes where an attention model can be accurate but fail to be interpretable, and show that such models do occur as a result of training. We illustrate various situations that can accentuate and mitigate this behaviour. Finally, we use our objective definition of interpretability for SDC tasks to evaluate a few attention model learning algorithms designed to encourage sparsity and demonstrate that these algorithms help improve interpretability.
translated by 谷歌翻译
The previous fine-grained datasets mainly focus on classification and are often captured in a controlled setup, with the camera focusing on the objects. We introduce the first Fine-Grained Vehicle Detection (FGVD) dataset in the wild, captured from a moving camera mounted on a car. It contains 5502 scene images with 210 unique fine-grained labels of multiple vehicle types organized in a three-level hierarchy. While previous classification datasets also include makes for different kinds of cars, the FGVD dataset introduces new class labels for categorizing two-wheelers, autorickshaws, and trucks. The FGVD dataset is challenging as it has vehicles in complex traffic scenarios with intra-class and inter-class variations in types, scale, pose, occlusion, and lighting conditions. The current object detectors like yolov5 and faster RCNN perform poorly on our dataset due to a lack of hierarchical modeling. Along with providing baseline results for existing object detectors on FGVD Dataset, we also present the results of a combination of an existing detector and the recent Hierarchical Residual Network (HRN) classifier for the FGVD task. Finally, we show that FGVD vehicle images are the most challenging to classify among the fine-grained datasets.
translated by 谷歌翻译
Efforts to improve the adversarial robustness of convolutional neural networks have primarily focused on developing more effective adversarial training methods. In contrast, little attention was devoted to analyzing the role of architectural elements (such as topology, depth, and width) on adversarial robustness. This paper seeks to bridge this gap and present a holistic study on the impact of architectural design on adversarial robustness. We focus on residual networks and consider architecture design at the block level, i.e., topology, kernel size, activation, and normalization, as well as at the network scaling level, i.e., depth and width of each block in the network. In both cases, we first derive insights through systematic ablative experiments. Then we design a robust residual block, dubbed RobustResBlock, and a compound scaling rule, dubbed RobustScaling, to distribute depth and width at the desired FLOP count. Finally, we combine RobustResBlock and RobustScaling and present a portfolio of adversarially robust residual networks, RobustResNets, spanning a broad spectrum of model capacities. Experimental validation across multiple datasets and adversarial attacks demonstrate that RobustResNets consistently outperform both the standard WRNs and other existing robust architectures, achieving state-of-the-art AutoAttack robust accuracy of 61.1% without additional data and 63.7% with 500K external data while being $2\times$ more compact in terms of parameters. Code is available at \url{ https://github.com/zhichao-lu/robust-residual-network}
translated by 谷歌翻译
Abstractive summarization has enjoyed renewed interest in recent years, thanks to pre-trained language models and the availability of large-scale datasets. Despite promising results, current models still suffer from generating factually inconsistent summaries, reducing their utility for real-world application. Several recent efforts attempt to address this by devising models that automatically detect factual inconsistencies in machine generated summaries. However, they focus exclusively on English, a language with abundant resources. In this work, we leverage factual consistency evaluation models to improve multilingual summarization. We explore two intuitive approaches to mitigate hallucinations based on the signal provided by a multilingual NLI model, namely data filtering and controlled generation. Experimental results in the 45 languages from the XLSum dataset show gains over strong baselines in both automatic and human evaluation.
translated by 谷歌翻译
We consider the problem of automatically generating stories in multiple languages. Compared to prior work in monolingual story generation, crosslingual story generation allows for more universal research on story planning. We propose to use Prompting Large Language Models with Plans to study which plan is optimal for story generation. We consider 4 types of plans and systematically analyse how the outputs differ for different planning strategies. The study demonstrates that formulating the plans as question-answer pairs leads to more coherent generated stories while the plan gives more control to the story creators.
translated by 谷歌翻译
Time series, sets of sequences in chronological order, are essential data in statistical research with many forecasting applications. Although recent performance in many Transformer-based models has been noticeable, long multi-horizon time series forecasting remains a very challenging task. Going beyond transformers in sequence translation and transduction research, we observe the effects of down-and-up samplings that can nudge temporal saliency patterns to emerge in time sequences. Motivated by the mentioned observation, in this paper, we propose a novel architecture, Temporal Saliency Detection (TSD), on top of the attention mechanism and apply it to multi-horizon time series prediction. We renovate the traditional encoder-decoder architecture by making as a series of deep convolutional blocks to work in tandem with the multi-head self-attention. The proposed TSD approach facilitates the multiresolution of saliency patterns upon condensed multi-heads, thus progressively enhancing complex time series forecasting. Experimental results illustrate that our proposed approach has significantly outperformed existing state-of-the-art methods across multiple standard benchmark datasets in many far-horizon forecasting settings. Overall, TSD achieves 31% and 46% relative improvement over the current state-of-the-art models in multivariate and univariate time series forecasting scenarios on standard benchmarks. The Git repository is available at https://github.com/duongtrung/time-series-temporal-saliency-patterns.
translated by 谷歌翻译
Timely and effective feedback within surgical training plays a critical role in developing the skills required to perform safe and efficient surgery. Feedback from expert surgeons, while especially valuable in this regard, is challenging to acquire due to their typically busy schedules, and may be subject to biases. Formal assessment procedures like OSATS and GEARS attempt to provide objective measures of skill, but remain time-consuming. With advances in machine learning there is an opportunity for fast and objective automated feedback on technical skills. The SimSurgSkill 2021 challenge (hosted as a sub-challenge of EndoVis at MICCAI 2021) aimed to promote and foster work in this endeavor. Using virtual reality (VR) surgical tasks, competitors were tasked with localizing instruments and predicting surgical skill. Here we summarize the winning approaches and how they performed. Using this publicly available dataset and results as a springboard, future work may enable more efficient training of surgeons with advances in surgical data science. The dataset can be accessed from https://console.cloud.google.com/storage/browser/isi-simsurgskill-2021.
translated by 谷歌翻译
In recent years the importance of Smart Healthcare cannot be overstated. The current work proposed to expand the state-of-art of smart healthcare in integrating solutions for Obsessive Compulsive Disorder (OCD). Identification of OCD from oxidative stress biomarkers (OSBs) using machine learning is an important development in the study of OCD. However, this process involves the collection of OCD class labels from hospitals, collection of corresponding OSBs from biochemical laboratories, integrated and labeled dataset creation, use of suitable machine learning algorithm for designing OCD prediction model, and making these prediction models available for different biochemical laboratories for OCD prediction for unlabeled OSBs. Further, from time to time, with significant growth in the volume of the dataset with labeled samples, redesigning the prediction model is required for further use. The whole process requires distributed data collection, data integration, coordination between the hospital and biochemical laboratory, dynamic machine learning OCD prediction mode design using a suitable machine learning algorithm, and making the machine learning model available for the biochemical laboratories. Keeping all these things in mind, Accu-Help a fully automated, smart, and accurate OCD detection conceptual model is proposed to help the biochemical laboratories for efficient detection of OCD from OSBs. OSBs are classified into three classes: Healthy Individual (HI), OCD Affected Individual (OAI), and Genetically Affected Individual (GAI). The main component of this proposed framework is the machine learning OCD prediction model design. In this Accu-Help, a neural network-based approach is presented with an OCD prediction accuracy of 86 percent.
translated by 谷歌翻译
The adversarial input generation problem has become central in establishing the robustness and trustworthiness of deep neural nets, especially when they are used in safety-critical application domains such as autonomous vehicles and precision medicine. This is also practically challenging for multiple reasons-scalability is a common issue owing to large-sized networks, and the generated adversarial inputs often lack important qualities such as naturalness and output-impartiality. We relate this problem to the task of patching neural nets, i.e. applying small changes in some of the network$'$s weights so that the modified net satisfies a given property. Intuitively, a patch can be used to produce an adversarial input because the effect of changing the weights can also be brought about by changing the inputs instead. This work presents a novel technique to patch neural networks and an innovative approach of using it to produce perturbations of inputs which are adversarial for the original net. We note that the proposed solution is significantly more effective than the prior state-of-the-art techniques.
translated by 谷歌翻译